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SYMBOLS 

Fm,n,A 

Generalized displacement coordinate associated with the nth mode 
of vibration of body h 

Mode-dependent parameter used to define body h center-of-mass 
(see equation 48) 

Force associated with the mass of body X and its combined 
centripetal and Coriolis acceleration 

Control torque applied to symmetric wheel m 

Mode-dependent parameter used to define body h inertia tensor 
(see equation 52) 

Mode-dependent parameter (see equation 70) 

Resultant force of constraint acting on body k through hinge point 
k- 1 

Resultant force acting on body k due to  all mechanisms existing 
between bodies J(k) and k at hinge point k-1 

Resultant of all external forces applied to body k 

Pseudo-inertia tensor of body h with respect to the origin of nest 
k-1 and the hinge point i-1 

Linear momentum of body h relative to the inertial origin 

Linear momentum of element i of body h relative to  the inertial 
origin 

Inertial angular momentum of symmetric wheel m 

Relative angular momentum of symmetric wheel m 

Angular momentum of symmetric wheel m relative to  the 
undeformed state of body MO(m) 

Mode-dependent parameter (see equation 68) 

Inertia tensor of symmetric wheel m about its center-of-mass 

V 
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mh 

mi, A 

N 

" 
N R  

q m  
-+ 

d., h 

Sk-1,h-1 

Body label of the body to  which body A is attached at hinge 
point X-1 

Mode-dependent parameter (see equation 72) 

Inertial angular momentum of body X about the inertial origin 

Inertial angular momentum of the element i of body h about 
its own center-of-mass 

Inertial angular momentum of body X.about its center-of-mass 

Total number of symmetric wheels 

Body label of the gyrostat in which symmetric wheel m is 
embedded 

Total mass of body h 

Mass of element i of body X 

Total number of rigid bodies, flexible bodies, and point masses 

Total number of flexible body modes (all flexible bodies) 

Total number of rigid and flexible bodies 

Free coordinate vector m 

Mode-dependent parameter used to define relative angular 
momentum of body X due to deformation (see equation 56) 

Position vector from hinge point A-1 to the undeformed center-of- 
mass position of the element i of body A 

Set of all rigid-body, body labels 

Set of all flexible-body, body labels 

Set of all point-mass body labels 

Set of all body labels of those bodies outboard of hinge point k-1 
relative to body 1 ; body labels of those bodies in nest k-1 

Set of all body labels associated with those bodies lying on the 
topological path from hinge point k-1 to the center-of-mass of 
body X 

vi 



4 
O+ 

ah 

+- 
71, A 

+ 
Y k , A  

r k . A  

a m  ,n 

ai,* 
+- 

Tensor operator which maps vectors into skew symmetric tensors 
of rank 2, dyads 

Position vector from hinge point A-1 of body A to the center-of- 
mass of body X 

Position vector from hinge point A-1 to the undeformed center-of- 
mass position of body X 

Position vector from inertial origin to hinge point 0 of body 1 ; that is, 
to the center-of-mass of body 1 

cd 

Position vector from hinge point J(X)-1 to hinge point X-1 

Position vector from hinge point J(X)-1 to the undeformed position 
of hinge point A-1 

Position vector from inertial origin to center-of-mass of body X 

Position vector from hinge point k to the center-of-mass of body X 

Skew symmetric tensor form of the vector Tk,, 
Kronecker delta function 

Position vector from the deformed center-of-mass position of 
body A to  the deformed center-of-mass position of the element i 

Position vector from the undeformed to  the deformed center-of- 
mass position of body X 

Position vector from the undeformed to the deformed position of 
hinge point A-1 

Change in the inertia tensor of body X from the undeformed to the 
deformed state 

Angular rate of a reference frame fixed in body J(X) at hinge point 
A-1 relative to a reference frame fixed at hinge point J(X)-1 in 
body J(X) 

Angular momentum of the symmetric wheel m associated with the 
deformation-induced rotation of its spin axis relative to the unde- 
formed state of body MO(m) 

V i i  
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0 

+ 
'i,h 

5 
+ 
'i, h 

+c 
@ k-1 

+C ' w m  

'H 
@ k-l 

+T 
pn, i ,  a 

'R 
p n , i , a  

Angular velocity of a reference frame fixed in the despun wheel m 
relative to the undeformed state of body MO(m) 

Angular momentum of the flexible body X relative to its center-of- 
mass, due to the elastic deformation of all elements i of body X 

Position vector from thedndeformed to the deformed center-of- 
mass position of the element i of body'X 

Damping ratio 

Relative rotation vector of the element i of body X from the unde- 
formed to the deformed state 

Displacement about or along free coordinate vector Tm 
. Inertia tensor of body X about its center-of-mass 

Inertia tensor of element i of body X about its own center-of-mass 

Inertia tensor of element i of body X about its own center-of-mass 
in the undeformed state of body X 

Inertia tensor of element i of body A about the deformed 
center-of-mass position of body X 

Inertia tensor of body X in the undeformed state relative to the 
undeformed center-of-mass position 

Resultant torque acting on body k due to  external causes 

Resultant torques of constraint acting on body k through hinge 
point k- 1 

Resultant torque of constraint acting on symmetric wheel m 

Resultant torque acting on body k due to all mechanisms existing 
between bodies J(k) and k at hinge point k-1 

The nth normal mode displacement vector for the element i of 
body X 

The nth normal mode rotation vector for the element i of body X 



0 

R' 

1 

Angular velocity of the body h fixed coordinate frame relative to 
the inertially fixed coordinate frame 

Angular rate of a reference frame fixed in body A at hinge point 
h-1 relative to  a reference frame fixed in body J(h) at hinge point 
A- 1 

Angular velocity of the body h fixed coordinate frame relative to 
the body J(h) fixed coordinate frame 

Inertial angular velocity of symmetric wheel m 

Angular velocity of the symmetric wheel m relative to the unde- 
formed state of body MO(m) 

Relative angular velocity of symmetric wheel m 

Natural frequency of the nth normal mode of vibration for body h 

Column matrix 

Square matrix 

Rectangular matrix 

Vector R' 
+ 

3X 1 matrix of components of vector R relative to body A fixed 
coordinates 

Time derivative of vector R' relative to inertially fixed reference 
frame 

+ 
Time derivative of vector R relative to the local reference frame when 
no confusion exists as to which local reference frame the differen- 
tiation is with respect to 

Unit dyad 

Summation over all indices i contained in the set Sk-l 

ix 



Summation over all indices i of vectors defined at hinge point k-1 

Sum over all elements of the body X 
ieh 

c 
m: 

MO(m)=h 

c 
Sum over all wheels imbedded in body X 

Sum over all modes to be used for the description of flexible body 
X elastic deformation 

Equivalence sign 

X 



A VECTOR-DYADIC DEVELOPMENT OF THE 
EQUATIONS OF MOTION FOR N-COUPLED 

FLEXIBLE BODIES AND POINT MASSES 

Harold P. Frisch 
Goddard Space Flight Center 

INTRODUCTION 

The development of a general purpose simulation model to be used to study the attitude 
dynamics of a general class of multibody spacecraft having one or more flexible members 
presents a number of formidable problems. The model must be computationally efficient, 
yield an accurate representation of the spacecraft's attitude dynamics, and provide suffi- 
cient generality to be applicable to a broad class of spacecraft. 

The burden of writing a computationally efficient program rests both with the analyst and 
the programmer. The analyst must write the equations in such a form that redundant com- 
putations and multiplications by zero can be readily avoided. The programmer must use 
computationally efficient programming techniques. If the programmer does not include 
the logic to  avoid redundant and meaningless computation, and makes excessive unneces- 
sary use of multidimensioned arrays, the speed of computation can easily be increased by 
more than an order of magnitude above what it should be. 

The burden of defining a representative model of a complex spacecraft rests solely with the 
analyst. An overdefmed model will yield accurate answers but will be useless from the 
standpoint of computational speed; an underdefined model will be highly efficient compu- 
tationally but will yield erroneous results. 

In reference 1, Velman's nested body approach has been used to derive the equations of 
motion of a topological tree of rigid bodies, point masses, and symmetric momentum 
wheels. These equations have been programmed and form the basis for the general purpose 
digital computer program, N-BOD. Too often, during the course of a particular study, the 
question has arisen as to the effects of body flexibility and its resultant perturbing effects 
on the response characteristics of the composite system. The quest for an answer to that 
question has motivated this study. It builds directly upon the nested body approach 
presented in reference 1. Excellent reviews of other methods of attacking the same general 
problem are provided by Likens in references 2 and 3. 

The aim of this flexible body analysis is to derive a final set of coupled body equations 
which separate effects that are analogous to those found by the coupled rigid body analysis 



from those effects which are unique to the coupled flexible body analysis. Achievement 
of this goal allows flexibility to be treated as simply an add-on effect. 

The equations are first given as a set of simultaneous vector-dyadic differential equations 
and are then reduced, by a method which eliminates unknown forces and torques of con- 
straint, to a set of simultaneous scalar differential equations. The equations are cast into 
a partitioned matrix format which has certain computationally desirable symmetry proper- 
ties. The effects of body flexibility are introduced by adding a few simple terms onto the 
coupled rigid body equations of motion, along with a generalized displacement coordinate 
equation for each elastic mode of vibration. To describe a body’s flexibility, clamped-free 
normal modes and frequencies of vibration are assumed obtainable for each flexible body. 
These may be obtained by closed-form continuum analysis, finite element analysis, or an 
educated guess. The mode shapes are not used per se within the final set of coupled body 
equations. They are used by a preprocessor to obtain resultant mode-dependent parame- 
ters for the stream of input data. 

Frequently the analyst must decide whether it is better to model a flexible appendage as a 
spring-connected rigid body or as a flexible body having several significant natural modes 
of vibration. To make an intelligent decision, there must be some means of comparing the 
two approaches. 

Because the equations derived are valid for either a rigid body or a flexible body model of 
any appendage, it is a routine process to step through the equations first with a rigid body 
model and then with a flexible body model of an arbitrary appendage. As both models 
simulate the same gyroscopic effects, equivalence relations can be established. These 
relations can then be reduced to  a set of three fundamental equivalence relations, which 
provide the guide for determining the best modeling approach for any particular problem. 

BASIC SYSTEM 

The basic system to be studied is identical to that defined in reference 1, with the excep- 
tion that now one or more of the bodies may be flexible. The theoretical development 
and notation used here is a natural extension of the work presented in reference 1, and, 
therefore, the large volume of supportive material presented in that document will not be 
repeated. 

Consider the pair of contiguous bodies shown in figure 1. 

As in reference 1, the following definitions are made: 

Body 1 

Body J(A) 

Hinge point A-1 

= principal body of the system of coupled bodies, 

= body contiguous to and, relative to body 1, inboard of body A, 

= point of connection between bodies J(A) and A, 

= position vector from hinge point A-1 to the center-of-mass of body A, 

2 



BODY X 

Figure 1. Notation for a pair of contiguous bodies. 

= position vector from hinge point J(A)-1 to hinge point A-1, 

= inertia tensor of body A plus that of all imbedded despun 
symmetric wheels about the composite body center-of-mass, 

= total mass of the body A, 

= position vector from the inertial origin to the center-of-mass of 
body A, 

= angular velocity of a coordinate frame fixed at hinge point A-1 
in body A relative to a coordinate frame fixed at hinge point 
J(A)-l in body J(h), and 

= angular velocity of a coordinate frame fixed at hinge point A-1 
in body h relative to a coordinate frame futed inertially. 
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The present study permits any one or all of the coupled bodies to be flexible. To maintain 
the required generality, it is assumed that a finite element model of each flexible body of 
the system can be defined. The elements into which each flexible body is decomposed 
are assumed to have both mass and rotational inertia characteristics. Of course, as the 
number of elements used increases, the rotational inertia characteristics of the elements 
approach zero. 

To establish the required notation, consider figure 2 for the arbitrary flexible body A. 

UNDEFORMED 

DEFORMED 

UN D E FOR bl E D 
POSIT!ON OF 
WHEEL m 

POSITION OF 
ELEMENT i 

DEFORMED 
POSITION OF 

POSITION OF 
ELEMENT i 

/ INERTIAL ORIGIN 

Figure 2. Notation .Jr  ..2xible body A. 

Let: 

= position vector from hinge point k l  to the undeformed center-of-mass O’, 

position of body A, 
% 

A<A 

O+ 

= position vector from the undeformed to the deformed center-of-mass 
position of body A, 

= position vector from hinge point A-1 to the undeformed center-of-mass ‘i, A 
position of element i of body A, 

4 



= mass of element i of body X, mi, 

'i,i,A 

O'i,i,h 

'a,i,a 

= inertia tensor of element i of body h about its own center-of-mass, 

= inertia tensor of element i of body X about its own center-of-mass in 
the undeformed state of body A, 

= inertia tensor of the element i of body X about the deformed center-of- 
mass position of body A, 

= position vector from the undeformed to the deformed center-of-mass + 
E .  1,a 

position of the element i of body A, 

+. 
'i,a = position vector from the deformed center-of-mass position of body X 

to the deformed center-of-mass position of element i, 

= relative rotation vector of the element i of body X from the undeformed 
to the deformed state, 

e: 1,a 

MO(m) = body label of the body in which symmetric wheel m is imbedded, 

2 
H m  = relative angular momentum of the symmetric wheel m imbedded in 

body MO(m), 

= inertia tensor of the symmetric wheel m about its own center-of-mass, IW, 
= position vector from hinge point J(X)-1 to the undeformed position of O+ 

Pa 
hinge point X- 1, 

ATA = position vector from the undeformed to the deformed position of hinge 
point X- 1 , 

= inertia tensor of body h in the undeformed state relative to  the unde- 
formed center-of-mass position, 

defomed state, 

O''h 

*'a = change in the inertia tensor of body h from the undeformed to the 

+ 0- 
= angular rate of a reference frame fixed in body X at  hinge point A-1 

relative to a reference frame fixed in body J(h) at hinge point X-1 
(relative rate minus the effects of body J(X) elastic deformation), 

0 
2 

= angular rate of a reference frame fixed in body J(X) at hinge point A-1 
relative to a reference frame fixed at hinge point J(X)-1 in body J(A) 
(the effect of elastic deformation of body J(A)), 

''a 
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+ 
= angular momentum of the symmetric wheel m relative to the undeformed 0- 

H m  
state of body MO(m), 

2 
= angular momentum of the symmetric wheel m associated with the *Hm 

deformation-induced rotation of its spin axis relative to the undeformed 
state of body MO(m), 

+ 
0 -  = angular velocity of the symmetric wheel m relative to the undeformed 

state of body MO(m), and 
0 

SWm = angular velocity of a reference frame fixed in the despun wheel m 
relative to the undeformed state of body MO(m) (the effect of elastic 
deformation of body MO(m)). 

Making use of these definitions, summing over all elements i, and deleting terms which are 
quadratic in deformation, the following equations are obtained: 

o+ + 
$A = a , + A a h  

6 

0 

N + ON + ; t  
= o h + A e h  

+ 
N 

+ + 
0- 

N 

H m  = Hm +AHm 

2 
+ Ae 

-+ 2 - ON 

w wm - "Wm. wm 

ieh 

A ieh 

(4) 



ieh 

ieh 

ieh 

where 

>: = sum over all elements i of body X, 
i e h  

1 = unit dyad, 
and 

0(e2 ) = terms quadratic in deformation. 
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MOMENTUM EQUATIONS FOR A FLEXIBLE BODY 

The basic definitions for linear and angular momentum found in any textbook on rigid 
body dynamics may be applied to  obtain the following relations: 

zI,h = linear momentum of flexible body X relative to the inertial origin 

+ 
0 LI,h = angular momentum of flexible body X relative to the inertial origin 

MO(m )=A 

where 

= sum over all wheels imbedded in body X, 
m: 

MO(m)=h 
0 

0 

and the closed dot implies an inertial derivative while the open dot implies dif- 
ferentiation relative to the local body X fixed reference frame. 

Direct substitution and application of previously made definitions yields: 

m: 

MO (m )= h 

where 

A I h , ,  = angular momentum of the flexible body h relative to its deformed 
center-of-mass position due to the elastic deformation of all elements i 
of body X 

8 



0 = angular momentum of symmetric wheel m, relative to  the inertial origin 

+ + z  H m = I  wm * w h t H m  

Straightforward differentiation yields the rates of change of momentum relative to the 
inertial reference: 

and 

i -+ 
%,A = mh TI,& ' 

m: 
MO (m)= h 

EQUATIONS OF VIBRATION FOR A FLEXIBLE BODY 

A set of equations which define the vibrational motion of an arbitrary flexible body rela- 
tive to its undeformed state is required for the complete definition of all terms contained 
in the momentum equations (27, 28, and 29). It is not essential, but it is most convenient, 
to  work toward a set of equations which define deformation in terms of the flexible body's 
normal modes of vibration. 

9 



At the hinge point A-1 of the flexible body A, a body-fixed reference frame is defined. 
Body X is assumed to  be clamped in both translation and rotation at the origin of this 
body-fixed reference frame ; all elastic deformation is measured relative to  it. While the 
position and orientation of this body A fixed reference is independent of deformation, 
it may have as many as three degrees of rotational freedom relative to its contiguous 
body, body J(A). 

Each element i of the finite element model of the flexible body A has, at most, six degrees 
of freedom: three translational and three rotational. In addition, the elements are each 
subject to viscoelastic loads and conditions of constraint. 

Let 

gI,i,h = linear momentum of element i of body X relative to an inertial reference 

and 

+. 
Li,i,k = angular momentum of the element i of body X about its own center-of-mass 

relative t o  an inertially fixed reference frame (small angle deformation 
assumed) 

The equations of motion for the elements of body A are obtained by defining the holonomic 
conditions of constraint which limit the number of allowable degrees of freedom for each 
element and by equating the time rate of change of momentum for each element to its 
viscoelastic loading. 

In order to separate relative-translational and relative-rotational deformation, partitioned 
matrix rotation is used to  write 

10 



The holonomic conditions of constraint can, in general, be written in the form 

where the number of rows of the rectangular matrix Lg J is equal to the number of 
constraint conditions and hence the number of degrees of freedom to be suppressed. 

The inertial time rate of change of momentum can, in general, be written in the form 

4- 
where row i of the upper partition is zI,i,A, row i of the lower partition is L, , 
d'/dt is the time derivative relative to the inertial reference. 

'The viscoelastic conditions existing between contiguous elements can be expressed in terms 
of resultant viscoelastic loads. In general, this will take the form 

and , ,  

p1 k12] [fa) - [Cl1 5.1 [ ;} 
k21 k22 c 2 1  c 2 2  

(3 5) 

where row i of the upper partition defines the resultant viscoelastic force acting on the 
element i, and row i of the lower partition defines the resultant viscoelastic torque acting 
on the element i. 

11 
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By a direct application of the:preceding, the general form for the equation of relative 
elastic deformation is found to be as follows: 

subject to the constraint equation 

In order to put the deformation equation into a form which is amenable to  an eigenvalue 
solution, it may be rewritten as 

where, on the right-hand side of equation 37, 

and the constraint equation (33) 

d' 
dt 

- -  ml 0 

O @  

0 

remains unchanged. 

An eigenvalue solution is obtained by assuming a solution of the form 

to the load-free equation 

(33)  

12 



R 

subject to the conditions of constraint 

Let 

- 1 0 )  . 

W n , h  = natural frequency of the ntk normal mode of vibration of body X, 

1 zA. \ = ntk orthogonal mode of vibration of body X, 
p n , k  

and impose the following normalization conditions: 

[mi,A.z:,i,A. . + T  pn, i ,h 'pm, i ,h  +R . ("'i,i,A.zEi,A.)] =mA.'m,n 

ie A. 

(33) 

where 

$&k = nth normal mode displacement vector for the element i of body A, 

$Ei,A. = ntk normal mode rotation vector for the element i of body X, 

and 

'm,n = Kronecker delta function. 

It should be noted that, in the normalization equation, as the number of elements used 
increases and their respective mass properties decrease in magnitude, the contributions due 
to their respective rotational inertia effects approach zero. Hence, for all m and n, 

where 

= total number of elements i of body A. Ni. A 

To obtain a modal solution to the deformation equation, a solution of the form 

(43) 

13 



is assumed for the motion of the element i of body h, where 

(t) = generalized displacement coordinate associated with the nth mode of an,h 
vibration of body h 

and 

sum over all modes to be used for the description of flexible body A 
elastic deformation. n,a 

Substitution of the assumed solution into the deformation equation (37), along with the 
standard application of orthogonality conditions, readily yields the uncoupled equations 
of motion for the generalized displacement coordinate an,A(t). That is, 

where proportional damping has been assumed and 5 is the damping ratio. 

Two points should be especially noted. First, each eigenvector satisfies the constraint 
equation (33); that is, 

Secondly, it is not necessary to  actually perform the finite element analysis outlined for 
every problem. The specific method used to obtain mode shapes is immaterial. The 
boundary conditions and normalization procedures, however, must be adhered to as 
follows: 

0 Boundary conditions 

The flexible body must be clamped in both translation and rotation at one and 
at only one point; this point is the origin of the body-fixed reference frame at 
the hinge point. Reference frames fixed at other points are assumed free to 
both translate and rotate relative to it. 

0 Normalization of modes 

A somewhat unconventional normalization procedure was found useful in 
uncoupling the generalized displacement coordinate equations. Six parameter 

14 



mode shapes are assumed available: three translation components of $: ,, for 

the element i and three rotation components of $ E i , A  for the minicoordinate 

frame fixed in the element i. They are normalized as follows: 

+R +T . + T  [ mi,h m,i,A n,i,A + m,i,h (O’i,i,h $Ei,h)] = mh’m,n (41) 
ie h 

The problem is essentially solved at this point. A tedious exercise in vector-tensor opera- 
tions must now be performed to  put the equations together into a computationally effi- 
cient form. The reader is referred t o  reference 1 for supportive material and to  references 
4 and 5 for proofs of the vector-tensor identities used and listed in the Appendix. 

There is no point in carrying out summations over all elements i at every integration step 
All summations of this type may be replaced by resultant mode-dependent parameters as 
follows : 

0 Center-of-mass vector 

where 

Inertia tensor 

% =  
LA 

where 

and using the post superscript T to imply “transpose” 

(49) 



0 Angular momentum due to deformation 

where 

i eh  

and terms quadratic in deformation have been deleted. 

0 Generalized force 

J 
i e h  

From the partition matrix equation (38), 

and 

(57) 

It is convenient, in the process of removing all summations over the elements i, to separate 
and collect terms which can be associated with the various components of acceleration. 
Accordingly , write 

+ + + + o +  o+ o + +  
71,A + -71,A - a h  + ah + r. L A  - ah + E .  1, (60) 

- 

and carry out the prescribed differentiations in equations 58 and 59 to  obtain 

+ 3, x (Zk x ( $i,h - O Z A  
4- 2 0 ,  + x ’ E i , h  ] (61) 
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P 

and 

Consistent application of the initial assumption that terms quadratic in deformation are 
negligible yields the following components of the generalized force. They are obtained 
from a direct substitution of equations 61 and 62 into equation 57. 

0 Generalized force component which is due to the linear acceleration of the 
undeformed center-of-mass position of the body h 

Generalized force component which is due to the inertial angular acceleration 
of the reference frame fixed at the origin (hinge point h-1 of body h) 

+ 
where Qn,h is defined by equation 56. 

0 Generalized force component which is due to the inertial angular velocity of the 
reference frame fixed at the origin (hinge point A-1 of body 1) 

where, by making use of equations 43 and 44 

(43) 
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and a manipulation of vector-tensor identities, the following relationships are 
established: 

where 

ie h 

where 

m,A 

where 
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A direct summation of the above components yields the desired form of the generalized 
force for the nth mode. That is, 

ie h 

These definitions, established by equations 47 through 73, are used t o  rewrite the rate of 
change-of-momentum equations (27, 28, and 29) as 

m :  \ I 
MO(m)=h 

and the generalized displacement coordinate equation (44) as 

In summary, the resultant mode-dependent parameters used in the analysis are: 
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ieh 

NESTED BODY EQUATIONS OF MOTION 

In reference 1, the nested body approach was used t o  write the coupled rigid body equa- 
tions of motion. This same approach can be used if the bodies are flexible. The extension 
of the equations to account for body flexibility simply involves carrying along a few more 
terms. The basic form of the equations remains unchanged. 

As in reference 1, several sets of body labels must be defined. The bodies are each given 
distinct integer labels such that, along the topological path from body 1 to any limb end, 
the body labels are of increasing numerical magnitude. Let 

. 

SR 

SL 

= the set of all body labels associated with rigid and flexible bodies, 

= the set of all body labels associated with point masses, 
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'F 

'k-1 

= the set of all body labels associated with flexible bodies, 

= the set of all body labels outboard, relative to  body 1, of hinge point 
k-1 of body k (these body labels define the bodies contained in the nest 
k-1), and 

'k-1 , A - 1  = the set of all body labels associated with those bodies on the topological 
path outboard from hinge point k-1 to the center-of-mass of body A. 

Furthermore, as in reference 1, let 

= position vector from the inertial origin to the hinge point of body 1, which, 
by definition, is its center-of-mass, and 

K 

= position vector from hinge point k-1 to  the center-of-mass of body A, -+ 
Yk- l  , A  

where 

+ - + +  
YI ,A = O l  -I- y O , A  ' 

k- 1, A- 1 

i+ k 

3:-1 = resultant force of constraint acting on body k through hinge point k-1, 

= resultant torque of constraint acting on body k through hinge point k-1, 

'c = resultant torque of constraint acting on the symmetric wheel m which 
prevents motion about any axis normal to its spin axis, dwIn 

= resultant force acting on body k due t o  all mechanisms existing between 
bodies J(k) and k at hinge point k-1, 

2 1  

'H = resultant torque acting on body k due to all mechanisms existing between k-1 
bodies J(k) and k at hinge point k-1 , 

= resultant torque acting on the symmetric wheel m due to all mechanisms 
existing between it and the body MO(m) in which it is embedded, 

C L  

sp = resultant external force acting on body k, and 

+ 
@ p = resultant external torque acting on body k. 
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Making use of the above definitions and Newton's fimdamental laws of motion, tKe equa- 
tions of motion for the nest k-l are: 

and 

By direct elimination of the forces of constraint from the angular momentum equations, 
the following relations can be shown: 

Rotation equation for nest k-1, keS, 

&'k-l 

&'k-l 

Translation equation for nest k-1, keS, and L S ,  

Symmetric wheel equation for wheel m 

+ 
i;,=;c +CLm 

wm 
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where, from equations 74, 75, and 76, 

-+ -+ 
%,A = mhyI,h ' 

+ &,A 'i;n,h t (2m+3*x;m) 
m :  

MO(m)=A 

and 
0 

. -+ ; ; t  -+ Hm = I - u A + H m + u A X  
wm 

Special consideration must be directed toward the vector representation of the translational 
acceleration of the center-of-mass of the body h. Since body h may be at the end of a 
chain of flexible bodies, several terms which were zero in reference 1 must now be included. 
That is, from equations 78 and 79, 
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From the standpoint of optimizing computational efficiency, it is desirable to establish 
symmetry relations. Accordingly, as in reference 1 , all inertial angular acceleration vectors 
are replaced by summations of relative angular acceleration vectors. The identity 

is therefore introduced and equation 89 rewritten as 

=&+E x+x +c z i x < - l , *  I 
%,A 

iesO,h-l iesO,A-l 

i #  1 

+c [zJJ(i) x (zJJ(i) x 6) + 2 i q i )  x i ]  + ZA x (3 x ZA) + 2w, + +  x lA . 
i E S 0 , A - 1  (91) 

i# 1 

Substituting the various vector identities provided and recombining terms yields: 

0 Rotation equation for the nest k-1, keS, 

.. - 
MO(m)=h 
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+ o'h, x (q x q) + 2$, x .'̂  O I  

Translation equation for the nest k-1, keS, and keS, 

i#k i# 1 

p o ,  h- 1 ' 
I I 

i f  1 
1 

Symmetric wheel equation for wheel m, h = MO (m) 
n 

i- 
I Gi = -zh x ( Iwm wm 

ieS0,h- l  

Generalized displacement coordinate equation 

ieS0 ,h- 1 
i f  1 

L 

+c 
ieS0,h-l  

mh( i i X  zn,h+8n,* ii] 

(94) 
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where the second order effect assumption has been exercised to write 

in equation 95. 

These equations may now be put into their final vector tensor form by the introduction of 
several more definitions. As in reference 1 , let: 

LP= skew operator such that for vector ? having components (vl , v2 , v,), 

and 

Furthermore, define 

(99) 

= force associated with the centripetal plus Coriolis acceleration of the 
center-of-mass of body h relative to the inertial reference 

F k  

26 



p 0 , h - l  

i# 1 

--* 
= angular momentum of body X about its own center-of-mass relative to L,, h 

the inertial reference 

m: 
MO(m)=h 

= angular momentum of wheel m about its own center-of-mass relative to 'm 
the inertial reference 

and make use of the vector-tensor identities provided in the Appendix to  recognize that 

0 
-+ 0 

N 2 
H m = I  -0 

wm wm ' 
and. 

Substitution and rearrangement of terms yields the following relations: 
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0 Rotation equation for nest k-1, kd3, 

1 

0,  k- 1 
i# k 

1 

i# 1 
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i#k i# 1 J 

Symmetric wheel equation for wheel my A = MO (m) 

ieSo,A-l 

Generalized displacement coordinate equation for mode n of body A, AeS, 

i e S O ,  A- 1 

0,  A- 1 
i f  1 
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PARTITIONED MATRIX FORM OF EQUATIONS OF MOTION 

The preceding equations may now be put into a compact partitioned matrix format. To 
do this, the number of bodies, wheels, and flexible modes must be known. Let 

N 

M 

N, 

N, 

= total number of rigid bodies, flexible bodies, and point masses, 

= total number of symmetric wheels, 

= total number of flexible body modes, and 

= total number of rigid and flexible bodies. 

By inspection,” it is readily seen that the equations of motion, equations 107 through 110, 
may all be expressed by the single partitioned matrix equation 

where the coefficient matrix on the left-hand side of the equation is symmetric (post 
superscript T implies “transpose”) and the following definitions are applied : 

0 0 0  

0 x a ~ + I c  z;,+Fg’+r-@ =Q, +@“+$(”) (1  12) 

0 

0 

This is an (N+l)X 1 column matrix of vector equations defining the equation of 
rotation for each nest containing one or more rigid or flexible bodies, the equa- 
tion of translation for each nest containing a single point mass, and the equation 
of translation for the composite system. 

N 

(1 13) 
ICT . 2  + 1s - lW =Q2 + 4; + C L  

This is an MX 1 column matrix of vector equations defining the equation of 
motion for each symmetric wheel. 

(1 14) 
0 0  

F T . Z + M ~ ~ : + A . ~  =Q, 

This is an N, X 1 column matrix of scalar equations defining the generalized 
displacement coordinate equation for each mode of vibration of each flexible 
body. 

T h e  reader is referred to the section “Equations of Motion (Matrix Form)” in reference 1 for supportive material. 
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This is an (N,-l)X 1 column matrix of vector equations defining the translation 
equation for each nest containing one or more rigid or flexible bodies but not 
the translation equation for the composite system. Since relative translation is, 
by definition, not permitted between contiguous rigid or flexible bodies, these 
equations do not introduce any independent state variables. Their inclusion, 
however, provides certain computationally useful symmetry relations and the 
equations which defme the unknown forces of constraint acting between con- 
tiguous rigid or flexible bodies. 

The partitioned matrix equation defined above makes use of an expanded set of state varia- 
bles which are not all independent. In order to arrive at a set of simultaneous equations 
which will not lead to singular coefficient matrices, a set of linearly independent state varia- 
bles and a rectangular linear transformation matrix must be defined. 

Throughout the development, an attempt has been made to  separate those effects which 
are obtained by a straightforward coupled rigid body analysis from those which must be 
added on to  account for the effects of body flexibility. Accordingly, it is convenient to 
choose as the set of independent state variables those rate vectors which define the relative 
motion of contiguous bodies at hinge points and the generalized displacement coordinate 
rates which define the effects of flexible body vibration. It should be noted that a some- 
what loose definition of independence is being employed at this point as the relative rate 
vectors used coalesce as many as three degrees of relative freedom into a single independent 
state variable. 

Making use of previously made definitions, the various elements of the expanded set of 
state variables may be expressed as follows: 

0 Relative angular rate between the reference frame fixed in body X 
and the reference frame fixed in flexible body J(h) 

0 

and 
0 

N - + 2  
o, = AB, A&, 

where 

0 

+R 2 
gn,J(A)(f)pn,H(h-l) ,  J ( h )  ’ 
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+R 

flexible body J(h), 

and 

= nth normal mode rotation vector at hinge point X-1 on the n,H (h-l),J(A) 

0 Relative translation rates 

For all point masses contiguous to either rigid or flexible bodies, the relative 
translation rate 

is an independent state variable. Similarly, the translation rate of hinge point 0 
relative to the inertial reference 

0 + k S ,  

is also an independent state variable. 

Relative angular rate between symmetric wheel m and flexible body MO(m) 
fixed reference frames 

0 

0 

+ 2 
+ A8 0-  

+ 
o =  
N 

wm "wm wm. 

where 
4 

+R A 8 = C *  N 

wm an,MO(m)(f) pn,W(m), MO(m) ' 

'R ' n,W(m),MO(m) 
= nth normal mode rotation vector at the attachment point 

of the wheel m in the flexible body MO(m), 

and 
0 0 0 0  

-+ -+ 2 0- 
0 = o  + G  . 

wm wm wm 

Translational rate of hinge point A-1 relative to its undeformed position in 
flexible body J(X) 

0 0  + +  
P , = 4 a ,  
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where 

N '  

w 

0 
N 

< 
O W  

a 
0 0  

, P  , 

a T H  (h-1 ),J(A) = nth normal mode displacement vector at hinge point A-1 in 
the flexible body J(h), and 

- - 

Combining the above definitions, it is possible to write the following rectangular linear 
transformation matrix equation that relates the expanded set of state variables to the 
chosen set of linearly independent state variables. That is, in partitioned matrix form, 

and 

k + 

Direct substitution of equation 127 into 11 1 yields the final form of the simultaneous 
vector-dyadic equations of motion for the total system and the equations which define 
the internal forces of constraint. That is, 
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x IC 

ICT P 

FT 0 

rT o 

- 
x IC 

ICT P 

FT 0 

rT o - 

~r 

0 0  

M' A 

AT MZ 

~r 

0 0  

M' A 

AT M2 

0 cox@; 

0 0  

0 0  

0 0  

a 

0- w 

0-  

% 

a 

+ + 

By leaving the equations in this form it is obvious that the effects of body flexibility 
may be taken into account by simply adding a few extra terms to the coupled rigid 
body equations. In practical applications, a simplified coupled rigid body model is 
usually the starting point. At this level there are no flexible modes of vibration and 
the equations reduce to those derived in reference 1. In the next step, some of the 
bodies are taken t o  be flexible, but hinge points and wheel attachment points are assumed 
to be either atinode points of flexible bodies or in rigid bodies. At this level the elements 
of the partitions qi , q t  , and q', are all zero. In the final step of analysis, both hinge 
points and wheel attachment points are subject to the effects of flexibility. At this level 
all partitions have nontrivial entries and must be included. Computationally, the above 
form is advantageous since simple logic flags can be created from an interrogation of the 
input data. These can then be used to determine whether various computation loops 
should or should not be executed. 

ELIMINATION OF CONSTRAINT TORQUES 

To solve the coupled vector-dyadic equations of motion, the unknown constraint torques 
must be deleted and the equations reduced to  a set of simultaneous scalar equations. The 
procedure is identical to that used in reference 1 .  

At every hinge point, free coordinate vectors are defined. These define the vector direc- 
tions about or along which relative motion of contiguous bodies is allowed (free). These 
may be sequentially indexed and the relative angular velocity vectors expressed as 

m@k-l 
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where 

= free coordinate vector defined at hinge point k-1 , + 
qm 

= scalar rate of ,body k relative to body J(k) about or along the free vector 
'm -+ 

9, Y and 

= sum over all free coordinate indices my defined at hinge point k-1. 
m @ k-1 

Differentiation of equation 129 yields 

w k =  c [emzm+8.",tm] . 
m@k-1 

Similarly, for symmetric wheels we may write 

and for point masses, 
0 0  zk= emzm 

m@k-1 

A partitioned rectangular matrix can be defined such that the system state vector can be 
rewritten as 

{ 3 = 

and 

9 0  

0 h 'i 
0 0 1  

Furthermore, at each hinge point, the free coordinate vectors are orthogonal to the con- 
straint torque, hence 
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In a manner identical to  that used in reference 1 the following set of simultaneous scalar 
equations is obtained by direct substitution of equation 134 into 128 and application of 
the orthogonality relation defined above in equation 13 5: 

0 

hT 

0 

0 

0 J 1 

T 

0 M1 A 

M1 A 
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where the last N, -1 vector equations of the partitioned matrix equation (1 36) may be 
evaluated if the forces of constraint between contiguous rigid or flexible bodies must be 
known. 

Equation 136 implies that a horrendous amount of matrix multiplication must be carried 
out. From a computational standpoint, however, the matrices are sparse, and relatively 
simple logic statements can be created which will eliminate all unnecessary numerical 
multiplications by zero. 

PREDEFINED RELATIVE MOTION OF CONTIGUOUS BODIES 

In practical application, it is frequently desirable to model an appendage deployment or 
the relative motion of a scanning antenna without introducing the details of a high fre- 
quency onboard control system. The ability to do this often results in an enormous saving 
of computer simulation time, since the high frequency loops of the control system need 
not be modeled. The solution method is rather straightforward and can readily be out- 
lined in general terms. 

The simultaneous vector-dyadic equations which define the motion of the system of 
coupled bodies take on the general form 

where, from equation 128, 

P I  = 

x IC 

ICT 1s 

FT 0 
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and 

t 

If one or more of the bodies of the system has its relative motion defined, the number of 
independent state variables is reduced, additional unknown constraint torques are intro- 
duced, and special solution techniques must be used. Let 

N 

= column matrix of all relative acceleration vectors which are given by known % 
hnctions of time and state, 

N 

~ f ; .  = column matrix of all independent relative acceleration vectors, and 

[ R] = reordering matrix such that 

Direct substitution of the identity into the basic form and premultiplication by the trans- 
pose of the reordering matrix yields 

221 2 2 2  

where 

= column matrix of con mint torques acting between rigid or ,,;xible bodies 
and constraint forces acting between point masses and their contiguous 
bodies at hinge points at which relative motion is undefined, and 

{ @:} = column matrix of constraint torques acting between rigid or flexible bodies 
and constraint forces acting between point masses and their contiguous 
bodies at hinge points at which relative motion is defined. 

Since all elements of the column matrix 
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are given functions of time and state, the equations of motion for the coupled body system 
are defined by 

and, if desired, the unknown constraint torques can be obtained from the equation 

FLEXIBLE VERSUS RIGID BODY MODELING 

In establishing a representative model of a spacecraft with flexible appendages, the analyst 
must decide whether to model each appendage as a spring-connected rigid body or as a 
flexible body having a finite number of significant modes of vibration. 

Neither modeling technique is perfect. Both have advantages and limitations which, if 
not taken into account, can severely compromise the conclusions drawn from the simula- 
tion model. It is possible, by a detailed study of the analysis presented in this report, to  
assess the analyst's choice of modeling technique. This is done by deriving a series of 
equivalence relations which define how the two modeling approaches describe the funda- 
mental dynamic characteristics of the elastic appendage and their dynamic coupling into 
the system equations of motion. 

Whether the analyst chooses to  model a flexible appendage as a spring-connected rigid 
body or as a flexible body, certain fundamental dynamic effects exist and must be proper- 
ly accounted for in the system equations of motion. These fundamental dynamic effects 
are independent of the choice of modeling technique; hence, the terms which simulate 
them, as derived by the two modeling approaches, are equivalent. 

If the topological tree of connected bodies has a flexible body which is not at a limb end, 
terms appear in the equations of motion which cannot be simulated by a simple spring- 
connected rigid body model of that flexible body. These terms are related to  the fact that 
coordinate frames at  the hinge points on the flexible body are not fixed relative to each 
other. 

The most common problem the spacecraft analyst is faced with, however, is the modeling 
of a flexible appendage, such as a boom, antenna, or solar array, which is at a limb end in 
the topological tree model. By making use of equations 107 through 1 10 and equation 
136, the arbitrary body, body h, may first be modeled as a spring-connected rigid body and 
then as a flexible body having several normal modes of vibration. In a step-by-step manner, 
terms which model identical dynamic effects may be equivalenced to each other, and the 
desired equivalence relations, which provide the measure of comparison between tech- 
niques, may be obtained. In the following development, body h is an arbitrary body 
at a limb end. 
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If body X is modeled as a rigid body, and if its contiguous body, body J(X), is a rigid body, 
then, from equations 1 16 and 129, its relative angular velocity is defined by the vector 
equation 

m@k-1 

The angular velocity of body A, relative t o  the inertial frame, is given by 

m@k-1 

If body X is modeled as a flexible body which is clamped to rigid body J(A), the angular 
velocity of its body-fixed reference frame, relative to  the inertial frame, is 

It will be shown that there are three fundamental dynamic characteristics of the body X 
which must be modeled. The modeling technique which best simulates these three charac- 
teristics will provide the most accurate simulation model. The fundamental dynamic 
characteristics are as follows: 

0 Relative linear velocity of the center-of-mass of body X 

The linear velocity of the center-of-mass of body X relative to a reference 
frame fixed in the contiguous body, body J(h), must be modeled by both tech- 
niques. The equivalence relation is given by 

n.h  

where the left-hand side pertains to  a rigid body simulation of body X and the 
right-hand side to a flexible body simulation of the same body X. 

Relative derivative of the inertia tensor of body h 

The time derivative of the inertia tensor of body X relative to the reference 
frame fixed in body J(X) must be modeled by both techniques. The equivalence 
relation is given by 

0 
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Relative angular momentum of body A about its center-of-mass 

The angular momentum of body h about its own center-of-mass relative to the 
reference frame fixed in body J(h) must be modeled by both techniques. The 
equivalence relation is given by 

To arrive at relations 149 through 15 1 , the system equations of motion, equations 107 
through 1 10 and 136, are examined in detail. 

The rotational motion of all nests containing at least one rigid or flexible body is given 
by equation 107. If body h is at  a limb end in the nest k-1 , the form of the cross- 
coupling term on the left-hand side of the equation is dependent upon how body h 
is modeled. 

On the left-hand side of equation 107, the cross-coupling term which is associated with a 
rigid body model of body h is 

where 

If body h is treated as a flexible body clamped to body J(h), the cross-cpupling term on 
the left-hand side of equation 107 is 

The equivalence relation for the cross-coupling term on the left-hand side of equation 136 
is 

where the term proportional to relative angular velocity is carried over to the right-hand 
side of equation 136. 
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For small angle relative motion, 
n 

and the relative angular velocity term 

Making use of equations 79, 99, 104, and 106, a routine substitution into equation 155 yields 

which readily implies the following relations: 

and 
0 

z h x  Zh= Ln,han,h(t) . 
n.h 

The terms on the right-hand side of equation 107, which are dependent upon body deform- 
ation and the inertial angular rates of the bodies contained within the nest k-1 , are given 
by the expression 

If body X is modeled as a rigid body, then the expression, 

appearing on the left-hand side of equation 107, is carried to  the right-hand side of equa- 
tion 136 and must be used for a determination of the equivalence relations. 
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Consider only the contribution of body h contained in the nest k-I. If body X is modeled 
as a rigid body, then it follows from equations 100, 101, 104, 146, and 147, along with 
the fact that body X deformation is zero, that 

and 

0 

$A = 0 ,  

i A  = o ,  

i#  1 

where it is assumed (for simplicity) that there are no momentum wheels in body A. 

If body X is modeled as a flexible body clamped to rigid body J(X), then it follows from 
equations 47,49, 53, 100, 10 1, and 148 that 
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- - ma [ c ['J(i) ('J(i) 6) + 2'J(i) "I pi 

ieS 0, a- 1 
i#  1 

and 

The desired equivalence relation is obtained by a substitution of equations 163 through 
169 into equation 161 minus 162 and equivalencing the result to  that obtained by a sub- 
stitution of equations 170 through 175 into equation 16 1 alone. The above substitutions, 
along with a slight rearrangement of terms and deletion of terms quadratic in deformation, 
yield : 

ieSo,a-i 

+ + 
w ~ ( a )  'a '~(a) + T k - l , h  ma ['J(i) ('J(i) 6) 
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+ 2'J(i) t ]  'J(h) ('](A) 'A) I 

By equivalencing equivalent dynamic effects in equation 176 on a term-by-term basis and 
applying the vector-tensor identities of the Appendix, the following three equivalence 
equations are obtained: 

and 

- - 2 Z J ( , )  x ( Z A X  ZA) 

Direct elimination of common factors from both sides of equations 177, 178, and 179 
yields the three fundamental equivalence relations given by equations 149, 150, and 1 5 1. 
That is, 
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and 

In an analogous manner, equivalence relations can be derived from the translation equation 
(1 08) for the nest k-1 . The equivalence relation for terms which appear on the left-hand 
side of equation 13 6 is 

and the equivalence relation for the terms on the right-hand side of the equation is 

n, h 

Direct cancellation of common factors in equations 180 and 18 1 leads to equations 160 
and 149. That is, 

and 

where use of the fact that 

has been made. 
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If body X is modeled as a rigid body, its equation of motion is the rotation equation for 
the nest A-1 , equation 107. This equation defines the rate of change of angular momen- 
tum of the body h relative to the inertial origin. 

If body X is modeled as a flexible body clamped to rigid body J(h), its equation of motion is 
the set of simultaneous generalized displacement coordinate equations given by equation 1 10. 
These equations have the units of translation; however, the generalized displacement coordin- 
ates are used to define both the translational and rotational motion of all elements of the body'X. 

Since the units of equation 107 and 1 10 are different, it is not possible to define equiva- 
lence relations. It should be noted, however, that the coefficient matrix on the left-hand 
side of equation 136 is symmetric for either modeling approach. Hence, the coupling 
coefficients appearing in the body X equation also appear in the equation for each nest 
which contains body A. 

In the right-hand side of the deformation equation ( 1 1 0), a back substitution of original 
definitions provided by equations 48 and 65 yields 

where 

m. 
1,A 

jES 0, A- 1 
j # l  1 

is the force associated with the element i of body h due to its centripetal and Coriolis 
acceleration, relative to an inertial reference, and 
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is the torque associated with the rate of change of relative angular momentum of the ele- 
ment i of body A about its own center-of-mass due to the angular velocity of the body A 
fixed reference frame. 

The other term on the right-hand side of equation 1 10, namely 
r 1 

is simply the standard spring and viscous damping effects which are normally expected in 
the equations of vibration. 

INTERPRETATION OF RESULTS 

The work presented in this document and in reference 1 provides a complete derivation of 
the equations of motion for a topological tree of coupled rigid bodies, flexible bodies, 
point masses, and symmetric momentum wheels. Furthermore, for the modeling of an 
elastic appendage, equivalence relations have been derived which define exactly how rigid 
body modeling and flexible body modeling procedures purport to describe identical dynam- 
ic effects. 

From an analysis of the derived equations and a knowledge of the digital computation 
which will be required to obtain numerical solutions, several points should be discussed. 
These points are intended to provide the analyst with a set of benchmarks which may be 
used in the development of a simulation model for a particular problem. 

Problem Setup 

The setup of the input data for a coupled rigid body model is extremely simple and can 
usually be done in a matter of minutes; furthermore, the input data consists of physically 
realizable quantities which can be readily checked. The setup of the input data for a 
coupled flexible body model is slightly more complex. Several mode-dependent parame- 
ters must be computed which do not have an obvious physical analogy. Depending upon 
the particular problem, these can be time consuming to compute and check. 

Computation Speed 

The internal computation which must be carried out by the computer should increase 
roughly as the square of the number of bodies used. If only first-mode bending vibration 
is to be modeled, the internal computation which will be performed if the body is treated 
as a flexible body is roughly equivalent to that which will be done if it is treated as a 
spring-connected rigid body. 
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If higher mode vibrational response is to be modeled, the input of modal data for the flexi- 
ble body model short circuits much of the internal machinery which must be gone through 
every integration step for a coupled rigid body model of the same appendage. In essence, 
a coupled rigid body model of a flexible body is forced to set up and solve an eigenvalue 
problem every integration step, while the flexible body model solves the problem once and 
uses the results to form the required input data. For this situation, flexible body modeling 
is usually mandatory from the standpoint of computation speed. One problem which should 
be recognized is that, for large angle elastic deformation, mode shapes and frequencies based 
upon linear elasticity can be an error source. A coupled rigid body model for this case may 
be necessary in spite of the impact upon computation speed. 

Interpretation of Numerical Solutions 

The interpretation of the results of a coupled body simulation can at times be extremely 
difficult, especially if superfluous degrees of freedom are permitted. The reader should 
be cautioned about using high-degree-of-freedom simulation models. Not only is compu- 
tation speed compromised, but a veil of noise can be created which will mask important 
effects such as slowly growing fundamental instabilities. These remarks apply equally to  
both rigid and flexible body simulation models. 

Choice of Modeling Technique 

The analyst must inevitably decide if the particular problem at hand can be adequately 
simulated as a system of coupled rigid bodies or if some of the bodies must be treated 
as flexible bodies having several natural modes of vibration. Neither modeling approach 
is perfect. 

The rigid body modeling approach permits only fundamental vibrational motion to be 
modeled. This is done by the introduction of a spring constraint which will yield the 
desired natural frequency of vibration for the spring-connected rigid body model. If this 
is acceptable, the equations as derived introduce no further assumptions; they are the 
exact nonlinear equations of motion of the defined coupled rigid body system. 

The flexible body modeling approach permits any number of vibration modes to be used 
to describe the dynamic characteristics of the body. If this approach is used, all terms 
quadratic in appendage deformation are assumed of second order importance and are 
dropped from the system equations of motion. It is emphasized that this assumption 
perpetuates itself throughout the entire set of system equations. It does not, definitely 
not, localize itself in the generalized coordinate equations alone. 

It is up to the analyst to decide whether it is more important for a particular application 
to include higher modes of iiibration or to include terms which are nonlinear in appendage 
deformation. The simulation model may be provided with the capability to have one effect 
or the other but not both. 
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The detailed study of the equations of motion which result from both the rigid body and 
the flexible body modeling approach has provided three fundamental equivalence rela- 
tions, namely: 

and 

In addition to these relations, the related supplementary relations 

n, h 

and 

should also be considered. It is essential to realize that the equivalence relations must be 
viewed relative to a common frame of reference. 

To determine which modeling approach is best for a particular application, the analyst 
need only substitute the expected parameters of the problem into equations 149, 150, 
and 151. The side of the equation which yields the most representative description of the 
respective dynamic effects dictates the modeling approach to be used. Furthermore, the 
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right-hand side of the equations provides a guide to the number of mode shapes required 
for representative modeling. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland November 26, 1974 
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APPENDIX 

VECTOR-DYADIC IDENTITIES 

The following vector-tensor identities have been used extensively throughout this docu- 
ment. They are scattered throughout various texts on the subject and collected here for 
the convenience of the reader. 

Let 

3 = vector 

ij = vector 

rt = vector 

T = dyad* 

1 = unit dyad 

9 
+= = skew operator such that for the vector P having components (p, , p2 , p3), 

relative to a particular frame of reference, 

Making use of the above definitions, the following vector-dyadic identities may be proven: 

*Also referred to as dyadic or tensor of rank 2. 
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